Control Smart Home With Magic Wand – Part 2: WiFi Streaming IR Camera / Emitter

This is part 2 of the Smart Home Magic Wand series which focuses on the WiFi streaming IR camera / emitter. This is what will emit IR light out to the wand and read the reflected IR light back from the tip of the wand. Part 1 gives more background on the project and discusses the wand in depth.

This IR Camera system combines a Raspberry Pi Zero W, a Pi NoIR Camera V2, an IR filter, IR lights, and a 3D printed case to create a WiFi streaming IR camera that will be used as the input to the software that will be discussed in Part 3.

All pieces of the WiFi streaming IR camera system.

The picture above shows all pieces used to create the streaming IR camera system. They are as follows:

Many of the parts shown in the picture above are from a disassembled High Power LED IR Illuminator. In this project I reuse the cord, the power board (pictured red above), and the IR LED board. If you buy the linked one, it is fairly easy to take apart and separate the components. In order to use one source of power for the IR lights and the Pi, I used a 5V BEC to convert the 12V input to 5V for the Pi. In the picture above the BEC is already added to the wire and is heat shrink wrapped near the end of the wire. The input to the BEC is the 12V from the IR Illuminator, and the output is wired to a standard 2-pin 0.1 header for plugging into the Pi Zero. The original connector is also coming out of the connector to supply the red power board with 12V.

If your Pi Zero W does not come with a header, you will need to add a 2-pin header to the power pins in order to power the Pi Zero W. The recommended power pins are pins 4 and 6 as shown below. For more Pi pinout information check out

The STL files for the 3D printed case are available here. There are three parts: Electronics Holder, Camera Shell, and Base. They need to be printed in something that can withstand high temperatures, as the IR LED board gets hot. PLA will not work. I used PETG without any problems. There is threading as part of the camera shell, so a higher resolution would be best. I printed at 0.1 mm layer resolution.

Raspbian Setup

On the SD card I used the most recent copy of Raspbian Stretch Lite. Once you write the image to your SD card (I used Etcher ) you will need to make an empty file called “ssh” in order to be able to ssh into your Pi. In order for the Pi Zero W to connect to your WiFi network you will also need to create a file called “wpa_supplicant.conf” with the following text:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

    ssid="YOUR SSID"

You will need to change the country, ssid, and psk (password) to match the settings of your WiFi network.

Once this is complete, eject the micro SD card, put it into your Pi Zero and power it up. Once it is powered up, find it’s IP address (using your router, Fing, etc.). You will need to have a static IP address on the Pi so we always know where to find it. I use a DHCP address reservation feature in my router, but you can also use a static IP configured on the Pi if you prefer.

Once your Pi is configured with a static IP, SSH into it. To perform the video streaming we will use mjpg-streamer, specifically the variant by jacksonliam. You can find it on GitHub here.

Run the following commands on your Pi to perform the initial updates:

sudo apt-get update
sudo apt-get -y upgrade
sudo rpi-update
sudo reboot

After the Pi reboots, SSH back into is and run “sudo raspi-config”. This will open the raspi-config menu. Arrow down to “Interfacing Options” and enable the camera. Once the camera is enabled press the right arrow to finish, and select yes on the menu option to reboot.

After the Pi reboots, SSH into it and run the following commands to install mjpg-streamer:

sudo apt-get -y install cmake libjpeg8-dev
sudo apt-get -y install git

cd ~
git clone

cd mjpg-streamer/mjpg-streamer-experimental
sudo make install

After running those commands, mjpg-streamer should be installed on your Pi. To test it, run the following command:

./mjpg_streamer -i "./ -r 640x480 -f 41  -rot 0" -o "./"

This will start streaming from your camera at a resolution (-r) of 640×480, at a frame rate (-f) of 41 fps, and rotating (-rot) the image 0 degrees. In order to view the stream type the following URL into a web browser:

Note that the IP address of my Pi Zero W is You will need to change that address to match the address of the Pi you are using.

If you are successful, you should see something like the following:

A beautiful shot of my dog’s bed in my office, as seen by the camera.

Note that in my test image I already have the IR filter installed, which is why it looks black and white. If you haven’t installed the IR filter yet you will see a color image.

Before moving on to the next step I wanted to state the significance of setting the frame rate to 41 fps. This is done to force the hardware to use a partial FOV (field of view) so the camera only uses part of the sensor. It is the equivalent of zooming in on the image the camera sees. If the fps is under 40, the FOV will be the entire sensor, a much wider area. This matters for our purposes because the wand motion will be harder to track in the wider view unless you (the wand) are closer to the camera. For my purposes the partial FOV worked best, but you should play around with it and see what works best for your setup. If you do use the full FOV by setting the frame rate lower, you will have partial blockage due to the IR light lenses. The higher the fps the more processing power that will be needed for the software portion (part 3) of the project. You can set the fps as high as 90 if you prefer. Only one of the Pi Zeros I tested was able to maintain 90 fps constantly without shutting down, likely due to overheating. That is the main reason I chose 41 fps here instead of 90 fps. More information about Pi camera resolutions, frame rates, and FOV can be found here.

Now that we have the Pi up and the streaming software installed, we need to make it so the Pi automatically starts the streaming software on boot. To do this we will setup a service for systemd. Send the following commands to the Pi via SSH:

cd /etc/systemd/system
sudo nano mjpgstreamer.service

This will open up a text editor that is bank. Put in the following text:

Description=A server for streaming Motion-JPEG from a video capture device

ExecStart=/home/pi/mjpg-streamer/mjpg-streamer-experimental/mjpg_streamer -i "/home/pi/mjpg-streamer/mjpg-streamer-experimental/ -r 640x480 -f 41  -rot 0" -o "/home/pi/mjpg-streamer/mjpg-streamer-experimental/"


Press ctrl-X to stop editing, and Y to save the file. You just created a service file that can be used to automatically start the mjpg-streamer automatically on boot using systemd. Next we need to enable this service:

sudo systemctl --system daemon-reload
sudo systemctl enable mjpgstreamer
sudo systemctl start mjpgstreamer

With those commands, your Pi should automatically start mjpg-streamer on boot. Go ahead and reboot (sudo reboot) to give it a try.

Hardware Assembly

Now that your Pi Zero is fully configured and functional, it is time to start assembling the camera system.

Step 1: Install camera into electronics holder with 4 M2 x 4 mm screws.

Step 2: Insert the camera cable and micro SD card into the Pi Zero, then screw the Pi Zero W to the electronics holder with 4 M2 x 4 mm screws. Be sure the Pi camera cable goes through the hole in the back of the electronics holder.

Step 3: Connect the Pi camera cable to the Pi camera as shown.

Step 4: Install the power board from the IR illuminator onto the electronics holder using 4 M2 x 4 mm screws.

Step 5: (optional) The electronics holder has a built in slot for an IR filter that will only allow IR light to pass through. This will help with false positives when tracking the wand. I used a cheap glass IR filter that I scored with a knife and broke into roughly the size needed to match the hole in the electronics holder.

Electronics assembly without IR filter.
Electronics assembly with IR filter.

Step 6: Install IR LED board on top of electronics holder using 2 M2 x 6 mm screws. Note that the IR LED board holds the IR filter glass into position.

Step 7: Route the power cable through the back of the 3D printed camera shell and connect power to the Pi and IR power board.

Step 8: Connect the power cable from the IR Power board to the IR LED board as seen near the top of the picture below.

Step 9: Now all of the wiring is connected and it is time to put the electronics holder inside the camera shell. Slowly push the electronics assembly into the shell being careful to help the power cord stay out of the way. Eventually it should fit entirely inside the shell with the micro SD card hanging slightly out the back. The micro SD card helps with getting everything aligned correctly.

Step 10: Once everything is aligned, use 3 M3 x 8 mm screws to secure the electronics assembly inside the camera shell.

Step 11: Carefully move the rubber grommet from the power cord inside of the hole in the back of the camera shell. Make sure power cord is in a neutral position so minimal strain is on the power connectors inside the shell.

Step 12: Screw the power cord nut into the back of the camera shell. This should keep the power cord firmly in place and prevent unnecessary stress on the power cables.

Step 13: Screw the base plate onto the camera shell using 2 M3 x 8 mm screws.

That’s it! Your WiFi streaming IR camera is complete! Power it up and make sure it all works. In part 3 of this series we will use software to tie everything together.

Leave a Reply

Your email address will not be published. Required fields are marked *